
MATH2050C Assignment 7

Deadline: March 11, 2025.

Hand in: 3.7 no. 3c, 10, 15, 16; 4.1 no. 11b, 12d, 15; 4.2 no. 1c, 2b.

Section 3.7 no. 3ac, 7, 10, 11, 12, 15, 16;

Section 4.1 no. 7, 8, 9bd, 10b, 11b, 12bd, 15;

Section 4.2 no. 1bc, 2bd.

Supplementary Problems

1. An infinite series
∑

n xn is called absolutely convergent if
∑

n |xn| is convergent. Show
that an absolutely convergent infinite series is convergent but the convergence of

∑
n xn

does not necessarily imply the convergence of
∑

n |xn|.

2. Prove by the Limit Theorem (see next page) that limx→c p(x) = p(c) for any polynomial
p and real number c.

3. Let f be a function on A and c a cluster point of A. Show that limx→c |f(x)| = |L|
whenever limx→c f(x) = L.

4. Let f be a non-negative function onA and c a cluster point ofA. Suppose that limx→c f(x) =
L for some L. Show that limx→c

√
f(x) =

√
L. Suggestion: Consider L > 0 and L = 0

separately.

See next page
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Basic Examples of Infinite Series

Let
∑∞

n=1 xn be an infinite series. Its n-th partial sum sn is given by
∑n

k=1 xk. An infinite series∑∞
n=1 xn is called convergent/divergent if the sequence {sn} is convergent/divergent. When

an infinite series converges, we use
∑∞

n=1 xn to denote the limit limn→∞ sn. Thus, the notation∑∞
n=1 xn has two meanings; first it is the notation for an infinite series, and second, it is the

ultimate sum of the infinite series (provided it converges).

Sometimes,
∑∞

n=1 xn is replaced by the simpler
∑∞

n xn or
∑

n xn.

Basic examples of infinite series. You should know the proofs behind them.

•
∞∑
n=1

(−1)n+1

is divergent.

• For α ∈ (0, 1),
∞∑
n=0

αn =
1

1− α
.

•
∞∑
n=1

1

na

is convergent if and only if a > 1.

• The alternating harmonic series
∞∑
n=1

(−1)n+1

n

is convergent.

The following comparison theorem is one of the most common test for convergence/divergence
for infinite series. We will discuss infinite series at length in MATH2060.

Comparison Theorem Let 0 ≤ xn ≤ yn for all n. Then (a)
∑∞

n=1 yn converges implies∑∞
n=1 xn converges; and (b)

∑∞
n=1 xn diverges implies

∑∞
n=1 yn diverges.

The Limit Theorem for Functions

Theorem 7.1 (Limit Theorem) Let c be a cluster point of A and f, g functions on A satisfying
f(x)→ L, g(x)→M as x→ c respectively. Then

1. limx→c(αf + βg) = αL+ βM .
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2. limx→c(fg)(x) = LM .

3. limx→c

(
f

g

)
(x) =

L

M
provided M 6= 0.

By induction, (1) and (2) of this theorem which hold for the sum or the product of two terms
can be extended to the sum or the product of finitely many terms.

In our textbook this theorem is proved by the Sequential Criterion. In class we proved it by
using the ε-δ definition. Here we repeat it for the product rule. Indeed, we have

|(fg)(x)− LM | = |f(x)g(x)− LM |
= |(f(x)− L)g(x) + L(g(x)−M)|
≤ |g(x)||f(x)− L|+ |L||g(x)−M | .

As g(x)→ M , for ε = 1, there is some δ0 such that |g(x)−M | < 1 for x ∈ A, 0 < |x− c| < δ0.
So |g(x)| ≤ |M |+ 1 there. We have

|(fg)(x)− LM | ≤ (|M |+ 1)|f(x)− L|+ |L||g(x)−M | ,

whenever 0 < |x− c| < δ0. Now given ε > 0, as f(x)→ L and g(x)→ M , there are δ1, δ2 such
that |f(x)− L| < ε/(|L|+ |M |+ 1) for 0 < |x− c| < δ1 and |g(x)−M | < ε/(|L|+ |M |+ 1) for
0 < |x− c| < δ2. It follows that for x, 0 < |x− c| < δ where δ = min{δ0, δ1, δ2},

|(fg)(x)− LM | < (|M |+ 1)
ε

|L|+ |M |+ 1
+ |L| ε

|L|+ |M |+ 1
= ε ,

done.

Theorem 7.2 (Sequential Criterion) The following statements are equivalent:

(a) limx→c f(x) = L ;

(b) For any sequence {xn}, xn 6= c, xn → c, f(xn)→ L as n→∞.

Here are some applications of the Sequential Criterion.

Example 7.1 Let p be a polynomial. For c ∈ R, limx→c p(x) = p(c). A polynomial is well-
defined everywhere on the real line. It is of the form a0 + a1x + · · · + anx

n for some n. It was
shown in Chapter 3 that limn→∞ p(xn) = p(c) for any sequence xn → c. By the Sequential
Criterion limx→c p(x) = p(c). You may also prove the same result using the Limit Theorem for
functions.

Example 7.2 Let p, q be two polynomials. For c satisfying q(c) 6= 0, limx→c p(x)/q(x) =
p(c)/q(c) . This conclusion comes from Example 7.1, Sequential Criterion and the quotient rule
for sequences.

Example 7.3 In Chapter 3 it was shown that the function xp/q, p, q ∈ N, is well-defined for

x ∈ [0,∞). And for any sequence xn → c ∈ [0,∞), x
p/q
n → cp/q. Immediately it follows from the

Sequential Criterion that limx→c x
p/q = cp/q.
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The Divergence Criteria follows directly from the Sequential Criterion.

Proposition 7.3 (Divergence Criteria) limx→c f(x) does not exist in either one of the
following two cases:

(a) There is xn ∈ A, xn 6= c, xn → c, such that {f(xn)} is unbounded;

(b) There are xn, yn ∈ A not equal to c and xn, yn → c such that f(xn)→ L1, f(yn)→ L2 with
L1 6= L2.

Example 7.4 limx→0 1/xp, p ∈ N, does not exist. Consider the sequence xn = 1/n → 0, we
have 1/xpn = np →∞. By the Divergence Criterion (a) this limit does not exist.

Example 7.5 limx→0 sin 1/x does not exist. Consider two sequences xn = 1/2πn and yn =
1/(2πn+π/2). Then sin 1/xn = sin 2πn = 0 and sin 1/yn = sin(2πn+π/2) = 1 for all n. Hence
L1 = 0 and L2 = 1. By Divergence Criterion (b), the limit does not exist.

The third consequence of the Sequential Criterion is the Squeeze Theorem.

Theorem 7.4 (Squeeze Theorem) Suppose that f(x) ≤ g(x) ≤ h(x), x ∈ A, and

lim
x→c

f(x) = lim
x→c

h(x) = L .

Then limx→c g(x) = L.

This theorem follows from the corresponding theorem for sequences and the Sequential Criterion.

Example 7.6 limx→0 sinx = 0. Using the estimate 0 ≤ sinx ≤ x for x ∈ [0, 1] and the fact
that the sine function is odd, −|x| ≤ sinx ≤ |x|, x ∈ [−1, 1]. A direct application of the Squeeze
Theorem gives the desired limit.

Example 7.7 limx→0 sinx/x = 1. This follows readily from the estimate x − x3/6 ≤ sinx ≤
x, x ∈ [0, 1] (see below). Derive both sides by x, we have 1 − x/6 ≤ sinx/x ≤ 1. Since sinx/x
is even, this estimate holds on [−1, 0) ∪ (0, 1]. By Squeeze Theorem limx→0 sinx/x = 1.

The sine and cosine functions will come more frequently in our later development. We will
discuss them in next week.


